Chapter 2

Limits

2.1 - Limits as $\mathrm{x} \rightarrow \mathrm{a}$ (a is constant)

$$
\lim _{x \rightarrow 2}\left(x^{2}-4\right)=2^{2}-4=0
$$

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{(x-2)(x+2)}{x-2}=2+2=-4
$$

1. Plug in a.
2. Factor, cancel, plug in a.
3. Consider the graph most likely there is a vert. asymptote at $x=$ a. Answer will be ∞, $-\infty$ or DNE.

2.1 - Special Trig Limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \sim
$$

$$
\lim _{x \rightarrow 0} \frac{7 \sin _{7 x}^{\prime}}{7 x}=7
$$

2.2 -Limits as $x \rightarrow \pm \infty$

Polynomial Functions: CONSIDER THE PARENT GRAPH| Function

$$
\lim _{x \rightarrow-\infty} 4 x^{4}-3 x^{2}+x=\infty \quad 4(-\infty)^{4}=\infty
$$

2.2 -Limits as $x \rightarrow \pm \infty$ $h(x)=\frac{g(x)}{f(x)}$

$$
\lim _{x \rightarrow \infty} \frac{4 x^{2}-3 x+x}{x^{3}-8 x}=\lim _{x \rightarrow \infty} \frac{4}{x} \rightarrow 0 \quad \lim _{x \rightarrow \pm \infty} h(x)=0
$$

2.2 -Limits as $x \rightarrow \pm \infty$

HORIZONTAL ASYMPTIE
Rational Functions: degree of denominator = degree of numerator

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{2}+3 x-x}{2 x^{2}+x}=\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{2 x^{2}}=\lim _{x \rightarrow-\infty} 2=2
$$

2.2 -Limits as $x \rightarrow \pm \infty$

Rational Functions: degree of denominator <degree of numerator

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{4 x^{3}+3 x+x}{2 x+x}=\lim _{x \rightarrow \infty} \frac{4 x^{3}}{2 x}=\lim _{x \rightarrow \infty} 2 x^{2}=\infty \\
\vdots!!!
\end{array}
$$

ReDUCE TO A
Polynomial
answer $15 \infty_{\infty}-\infty_{1}$
OLDIE

2.3-Continuity

Definition of Continuity at a Point:

$$
f(x) \text { is cmi @ } x=C \text { IFF } \lim _{x \rightarrow c} f(x)=f(c)
$$

Types of Discontinuities:

$\lim _{n \rightarrow c}$ DNE

Homework:

AP Packet \#17-23
p. 91 \#1-19 odd, 25, 29, 31, 39

